EduRev
- Home
- Explore Courses
- Pricing Plans
- Doubts
- My Profile
- Switch to Infinity
"; html += "
Change " + classTitle + ""; html += "
Add " + classTitle + ""; if (data.length > 1) { html += "
Remove " + classTitle + ""; } html += "
"; $(".ER_Model_Header").html("
Change/Add " + classTitle + "
"); $(".ER_Model_Content").html(html); $(".ER_Model_Footer").html(""); $(".ER_Model_Footer").hide(); $(".ER_Model .modal-header").addClass("chng_cls_pp"); $(".ER_Model").modal({ animation: true, backdrop: 'static', keyboard: false, show: true }); } }, error: function (a, b, c) { console.log(a + "," + b + "," + c); _HideLoader(); } }) }; // getcatforchangeclass = function (callfor) { _ShowLoader(); $.ajax({ type: "POST", data: "{}", url: "/UserData/GetUserCategoryList", contentType: "application/json;charset=utf-8", dataType: "json", success: function (data) { console.log(data); if (data.length > 0) { try { closeNav(); } catch (e) { } var isSchoolClassHidden = ""; try { isSchoolClassHidden = $("#isSchoolClassHidden").val(); } catch (e) { } var classTitle = "Exam"; if (isSchoolClassHidden != undefined && isSchoolClassHidden != null && isSchoolClassHidden != "" && (isSchoolClassHidden.toLocaleLowerCase() == "true" || isSchoolClassHidden == true)) { classTitle = "Class"; } var isonecat = 0; if (data.length == 1) { isonecat = 1; } var html = "
"; html += "
Select the " + classTitle.toLowerCase() + " you want to leave
"; for (var i = 0; i < data.length; i++) { var checkselectedclass = ""; if (isonecat == 1) { html += "
" + data[i]["name"] + ""; } else { html += "
" + data[i]["name"] + ""; } // html += "
"; } html += "
"; if (isonecat == 1) { html += "
Next Step
"; } else { html += "
Next Step
"; html += "
"; } if (callfor != undefined && callfor != null && callfor != "" && callfor == "r") { $(".ER_Model_Header").html("
Remove " + classTitle + "
"); } else { $(".ER_Model_Header").html("
Change " + classTitle + "
"); } $(".ER_Model_Content").html(html); $(".ER_Model_Footer").html(""); $(".ER_Model_Footer").hide(); $(".ER_Model .modal-header").addClass("chng_cls_pp"); $(".ER_Model").modal({ animation: true, backdrop: 'static', keyboard: false, show: true }); } else { } _HideLoader(); }, error: function (a, b, c) { console.log(a + "," + b + "," + c); _HideLoader(); } }); // }; removeoldclass = function (callfor) { _ShowLoader(); var catids = ""; var totalcatcount = $(".changeclasscatdiv").length; var selectedcatcount = $(".changeclasscatdivselected").length; $.each($(".changeclasscatdivselected"), function () { catids += $(this).attr("dataid") + ","; }); if (catids != undefined && catids != null && catids != "") { $.ajax({ type: "POST", data: "{catId: '" + catids + "'}", url: "/UserData/RemoveEnrolledCategoryCourses", contentType: "application/json;charset=utf-8", dataType: "json", success: function (data) { //console.log(data); if (data.Status == 200) { _ShowLoader(); try { DeleteCookie("starblockfirst"); } catch (e) { } if (callfor != undefined && callfor != null && callfor != "" && callfor == "r" && selectedcatcount < totalcatcount) { _ShowLoader(); window.location.href = "/home"; } else { $(".ER_Model_Content").html(""); var _UserCourseCategoryWidget = '/Course/UserCourseCategoryWidget'; $.get(_UserCourseCategoryWidget, function (data) { var widgetHTML = "
" + data + "
"; $(".ER_Model_Content").html(widgetHTML); var OldHeader = $(".wid_hdr").html(); var newHeader = ""; //newHeader += ""; //newHeader += "
Welcome to EduRev
"; newHeader += "
"; //newHeader += ""; $(".wid_hdr").html(newHeader); $(".ER_Model_Content").css("padding", "0px"); $(".ER_Model .modal-content").css("margin-top", "0px"); $(".ER_Model .modal-dialog").css("margin-top", "10px"); $(".ER_Model .modal-header").hide(); $(".ER_Model .modal-footer").hide(); $(".ER_Model").modal("show"); $("#refreshCoursesList").val("1"); $(".wid_hdr h1 img").css("margin-left", "25px"); try { //getCatList(4, 'catList', 'direct'); loadExploreData(""); } catch (e) { } }); } } _HideLoader(); }, error: function (a, b, c) { console.log(a + "," + b + "," + c); _HideLoader(); } }); } else { _HideLoader(); alert("Please select any interest"); } // } selectcatForRemove = function (catid, callfor) { if (callfor != undefined && callfor != null && callfor != "" && callfor == "r") { var totalcatcount = $(".changeclasscatdiv").length; var selectedcatcount = $(".changeclasscatdivselected").length; //if (selectedcatcount < parseInt(totalcatcount - 1)) { $(".changeclasscatdiv" + catid).addClass("changeclasscatdivselected"); $(".changeclasscata" + catid).attr("onclick", "unselectcatForRemove('" + catid + "','" + callfor + "')"); $(".changeclasscaticonsimg" + catid).attr("src", 'https://edurev.gumlet.io/cdn_assets/v267/assets/img/home/selectionradiored.svg'); $(".removecaterrormsg").hide(); $(".divforRemoveClassbtn").show(); //} //else { // if (totalcatcount == 1) { // $(".divforRemoveClassbtn").hide(); // $(".removecaterrormsg").show(); // $(".removecaterrormsg").html("You must have at least one learning goal. You can't remove all categories Cancel"); // } // else { // $(".removecaterrormsg").show(); // $(".removecaterrormsg").html("You must have at least one learning goal. You can't remove all categories"); // } //} } else { $(".changeclasscatdiv" + catid).addClass("changeclasscatdivselected"); $(".changeclasscata" + catid).attr("onclick", "unselectcatForRemove('" + catid + "','" + callfor + "')"); $(".changeclasscaticonsimg" + catid).attr("src", 'https://edurev.gumlet.io/cdn_assets/v267/assets/img/home/selectionradiored.svg'); $(".divforRemoveClassbtn").show(); } } unselectcatForRemove = function (catid, callfor) { $(".changeclasscatdiv" + catid).removeClass("changeclasscatdivselected"); $(".changeclasscata" + catid).attr("onclick", "selectcatForRemove('" + catid + "','" + callfor + "')"); $(".changeclasscaticonsimg" + catid).attr("src", 'https://edurev.gumlet.io/cdn_assets/v267/assets/img/home/selectionradio.svg'); if (callfor != undefined && callfor != null && callfor != "" && callfor == "r") { if ($(".changeclasscatdivselected").length == 0) { $(".divforRemoveClassbtn").hide(); } else { $(".removecaterrormsg").hide(); $(".divforRemoveClassbtn").show(); } } else { if ($(".changeclasscatdivselected").length == 0) { $(".divforRemoveClassbtn").hide(); } } } openDirectCatePopup = function () { $(".ER_Model_Content").html(""); var _UserCourseCategoryWidget = '/Course/UserCourseCategoryWidget'; $.get(_UserCourseCategoryWidget, function (data) { var widgetHTML = "
" + data + "
"; $(".ER_Model_Content").html(widgetHTML); var OldHeader = $(".wid_hdr").html(); var newHeader = ""; //newHeader += ""; //newHeader += "
Welcome to EduRev
"; var cntryhtml = "
"; newHeader += "
" + cntryhtml+"
"; //newHeader += ""; $(".wid_hdr").html(newHeader); $(".ER_Model_Content").css("padding", "0px"); $(".ER_Model .modal-content").css("margin-top", "0px"); $(".ER_Model .modal-dialog").css("margin-top", "10px"); $(".ER_Model .modal-header").hide(); $(".ER_Model .modal-footer").hide(); $(".ER_Model .modal-header").addClass("chng_cls_pp"); $(".ER_Model").modal("show"); $("#refreshCoursesList").val("1"); $(".wid_hdr h1 img").css("margin-left", "25px"); try { //getCatList(4, 'catList', 'direct'); loadExploreData(""); } catch (e) { } }); } $('#ER_Model').on('hidden.bs.modal', function () { try { $(".ER_Model .modal-header").removeClass("chng_cls_pp"); } catch (e) { } }); UnAttemptedTestList_pp = function () { try { closeNav(); } catch (e) { } var ht_cr = $(".unattepmtedTestData_courses").html().trim("\n"); if (ht_cr == "") { purchasedCourses(true); } $("#unattemptedTest").modal("show"); $(".unattepmtedTestData_courses").show(); $(".unatdtstcrshdr").show(); $(".unattepmtedTestData").hide(); $(".unattepmtedTestData_courses").scrollTop(0); } unattemptedTestBak = function () { $(".unattepmtedTestData_courses").show(); $(".unatdtstcrshdr").show(); $(".unattepmtedTestData").hide(); $(".unattdtst_bck").hide(); } UnAttemptedTestList = function (courseId) { _ShowLoader(); $.ajax({ type: "POST", data: "{courseId:" + courseId + "}", url: "/Quiz/UnAttemptedTestList", contentType: "application/json;charset=utf-8", dataType: "text", success: function (data) { data = JSON.parse(data); if (data != "" && data != null && data != undefined && data.length > 0) { var row = ""; for (var j = 0; j < data.length; j++) { row += "
"; row += "
" + data[j]["ParentSubcourseTitle"] + "
"; for (var i = 0; i < data[j]["testList"].length; i++) { row += "
\
\
\
\ \ \ \
\
\
\
\ " + data[j]["testList"][i]["title"] + "\
\ "+ data[j]["testList"][i]["totalQues"] + " Ques | " + data[j]["testList"][i]["time"] + " Mins"; if (data[j]["testList"][i]["isInfinity"] == true && data[j]["testList"][i]["isPurchased"] == false) { row += " | Unlock"; } row += "
\
\
\
\
"; } row += "
"; } $(".unattepmtedTestData").html(row); } else { $(".unattepmtedTestData").html("
No unattempted test available
"); } $(".unattepmtedTestData_courses").hide(); $(".unatdtstcrshdr").hide(); $(".unattepmtedTestData").show(); //$("#unattemptedTest").modal("show") $(".unattepmtedTestData").scrollTop(0); $(".unattdtst_bck").show(); _HideLoader(); }, error: function (a, b, c) { _HideLoader(); console.log(a + "," + b + "," + c); } }); }; var moreEnrolledCourses = "View All"; purchasedCourses = function (onlyunattempted) { var uid = $("#uid").val(); if (uid != "-1") { $.ajax({ type: "POST", url: "/Course/purchasedCourses", contentType: "application/json;charset=utf-8", data: "{UserId: '',NeedCourseProgress:'1'}", dataType: "json", async: true, success: function (data) { console.log(data); var enrolledCoursesHTML = ""; if (data != undefined && data != null && data != "") { var row = ""; var mobileViewHtml = ""; var mobileViewHeaderHtml = ""; var filterhtml = ""; var headerText = ""; var DataJson = data; var count = 0; var ShowLength = DataJson.purchasedCourses.length; var TotalLength = ShowLength; var show_course_block = ""; var maxcourseshow = 8; var showMoreCount = parseInt(parseInt(TotalLength) - parseInt(maxcourseshow)); var shmrimgarr = ""; var showMoreTxt = ""; if (showMoreCount == 1) { showMoreTxt = "View " + showMoreCount + " more course"; } else { showMoreTxt = "View " + showMoreCount + " more courses"; } var showMoreHTML = ""; //var showMoreHTMLMob = ""; enrolledCoursesHTML = "
" + DataJson.purchasedCourses[i]["Title"] + " | "; mobileViewHtml += ""; mobileViewHtml += ""; mobileViewHtml += " | |
" + DataJson.purchasedCourses[i]["Title"] + " |
"; } $("#hiddenuserhascoursewithtest").val(hasCourseWithQuiz); if (hasCourseWithQuiz > 0) { $(".unattepmtedTestData_courses").html(enrolledCoursesHTML); $(".unattepmtedTestData_courses").show(); $(".unatdtstcrshdr").show(); $(".unattdtst_bck").hide(); } else { $(".otr_opn_unatdtst").hide(); $(".otr_opn_unatdtst_a").hide(); $(".unatdtstcrshdr").html(""); $(".unattepmtedTestData_courses").html("
No tests available in the enrolled courses
"); $(".unattepmtedTestData_courses").show(); //$(".unatdtstcrshdr").show(); //$(".unattdtst_bck").hide(); } $(".unattepmtedTestData").hide(); row = "
" + row + "
"; if (count > parseInt(maxcourseshow)) { var showMoreCount = parseInt(parseInt(TotalLength) - parseInt(maxcourseshow)); var shmrimgarr = ""; var showMoreTxt = ""; if (showMoreCount == 1) { showMoreTxt = "View " + showMoreCount + " more course"; } else { showMoreTxt = "View " + showMoreCount + " more courses"; } if ($("#refreshCoursesList").val() != undefined && $("#refreshCoursesList").val() != null && $("#refreshCoursesList").val() != "" && ($("#refreshCoursesList").val() == "1" || $("#refreshCoursesList").val() == 1)) { var sh_mr = "
"; moreEnrolledCourses = "View " + parseInt(parseInt(TotalLength) - parseInt(maxcourseshow)) + " more courses" + shmrimgarr; row = sh_mr + row; } else { $(".mycourses_showmore").html(showMoreHTML); //$(".mycourses_showmore_mob").html(showMoreHTMLMob); //row = row + showMoreHTML; //row += ""; moreEnrolledCourses = "View " + parseInt(parseInt(TotalLength) - parseInt(maxcourseshow)) + " more courses" + shmrimgarr; } } if (onlyunattempted != null && onlyunattempted != undefined && onlyunattempted != "" && onlyunattempted == true) { } else { if (row.length > 0) { $(".mycourses").show(); $(".mycourses").css("display", "inline-block"); $(".ed_innerBox_courses").css("display", "inline-block"); $(".ed_innerBox_courses").css("width", "100%"); row = headerText + filterhtml + row; mobileViewHtml = mobileViewHeaderHtml + filterhtml + mobileViewHtml; //$(".mycoursesmob").html(mobileViewHtml); var screenWidth = screen.width; if ($("#refreshCoursesList").val() != undefined && $("#refreshCoursesList").val() != null && $("#refreshCoursesList").val() != "" && ($("#refreshCoursesList").val() == "1" || $("#refreshCoursesList").val() == 1)) { if (screenWidth != null && screenWidth != undefined && screenWidth < 500) { $(".mycourses").html(mobileViewHtml); } else { $(".mycourses").html(row); } } else { if (screenWidth != null && screenWidth != undefined && screenWidth < 500) { $(".mycourses").html(mobileViewHtml); } else { $(".mycourses").append(row); } } } } //setTimeout(function () { //$.adaptiveBackground.run({ // exclude: ['rgb(0,0,0)'] // too many black pixels //}); //}, 5000); } else { $(".otr_opn_unatdtst").hide(); $(".otr_opn_unatdtst_a").hide(); $(".unatdtstcrshdr").html(""); $(".unattepmtedTestData_courses").html("
No tests available in the enrolled courses
"); $(".unattepmtedTestData_courses").show(); //$(".unatdtstcrshdr").show(); //$(".unattdtst_bck").hide(); } }, error: function (a, b, c) { console.log(a + "," + b + "," + c); } }); } }; showmorepurchased_courses = function (ctrl, hide_ctrl) { $(ctrl).show(); //$(hide_ctrl).html("View Less"); //$(hide_ctrl).attr("onclick", "showlesspurchased_courses('" + ctrl + "','" + hide_ctrl + "')"); $(hide_ctrl).html("View all courses"); $(hide_ctrl).attr("onclick", "gotoallcourse();"); } showlesspurchased_courses = function (ctrl, hide_ctrl) { $(ctrl).hide(); $(hide_ctrl).html(moreEnrolledCourses); //$(hide_ctrl).text("View All"); $(hide_ctrl).attr("onclick", "showmorepurchased_courses('" + ctrl + "','" + hide_ctrl + "')"); } DeleteCookie = function (name) { try { setCookiejavascript(name, "", -1, 1); } catch (e) { } try { document.cookie = name + "=; expires=Thu, 01 Jan 1970 00:00:00 UTC; path=/;"; } catch (e) { } };
FAQs
Do you need to know how do you complete the square for the SAT? ›
Some questions on the SAT Math Test will ask you to solve a quadratic equation. You must determine the appropriate procedure: factoring, completing the square, using the quadratic formula, using a calculator (if permitted), or using structure.
Why do you get 2 answers when you square root 16? ›Originally Answered: Why we take two values of square root ? But if you write x= √16, it means you take only the positive value, which can be also considered as the Principal Square Root (the non-negative root) of 16.
What level of math is needed for SAT? ›Some questions on the SAT Math test may include concepts that seem unfamiliar to you, but don't worry–all the topics tested on the SAT Math test are taught in your typical high school Pre-algebra, Algebra I, Algebra II, Geometry, and Pre-Calculus classes.
How much math do you need to know for the SAT? ›Within SAT Math, you have to master a lot of subjects. At the high level, you need to know basic algebra, advanced algebra, data analysis, and geometry. Even further, within algebra, you need to know how to solve equations, how to deal with word problems, properties of functions, etc.
Does a square root always have 2 answers? ›Your overall question seems to be the definition of the square root function f(x)=√x. As for roots of quadratic equations, there will always be two (complex roots).
What is the basic rule for square root? ›Understanding the Square Root
To square a number, just multiply that number by itself. For example, 32 = 9. A square root works in the opposite way. For instance, if you square 3, you get 9, and if you "take the square root of 9", you get 3 (i.e. 32 = 9 so √9 = 3).
Every number except 0 has two square roots, a positive and a negative. The positive square root is the principal square root and is written √b . To denote the negative root, write −√b and to indicate both roots write ±√b .
Why √25 is 5? ›In the repeated subtraction method, we subtract the odd numbers starting from 1 until we get a 0. Hence, √25 = 5.
What is the rule of 2 square root? ›The square root of 2 or root 2 is represented using the square root symbol √ and written as √2 whose value is 1.414. This value is widely used in mathematics. Root 2 is an irrational number as it cannot be expressed as a fraction and has an infinite number of decimals.
Does square root 4 have 2 answers? ›The value of root 4 is equal to exactly 2. But the roots could be positive or negative or we can say there are always two roots for any given number. Hence, root 4 is equal to ±2 or +2 and -2 (positive 2 and negative 2). You can also find square root on a calculator.
Which method is best for square root? ›
- Separate your square root base into pairs. ...
- Find the largest square that divides into the first number or pair. ...
- Subtract the square from the first number or pair. ...
- Drop down the next pair. ...
- Multiply the first digit of the square by two. ...
- Set up the next factor equation.
Hence, the methods for finding the square roots are prime factorization, repeated subtraction method, and long division method.
What is the hardest part of SAT Math? ›Linear equations and inequalities and their graphs and systems. Problem Solving and Data Analysis: 29% of test, 17 questions. Ratios, proportions, percentages, and units; analyzing graphical data, probabilities, and statistics. Passport to Advanced Math: 28% of test, 16 questions.
What is tested most on SAT Math? ›While 90% of your questions will fall into the Heart of Algebra, Passport to Advanced Math, or Problem Solving and Data Analysis categories, the remaining 10% will simply be classified as Additional Topics. These topics include geometry, trigonometry, and problems with complex numbers.
Does SAT Math go from easy to hard? ›A Difficulty Level Overview. It's pretty easy to figure out the difficulty level of questions on the Math Test - sections here generally increase in difficulty as they go on. The first few questions are the easiest, and the last few are the hardest.
What is the lowest math score on SAT? ›What Is the Lowest SAT Score? On the Redesigned SAT, the lowest possible score is a 400: 200 on Evidence-Based Reading and Writing and 200 on Math.
What is the lowest on math SAT? ›You might be surprised to learn that the lowest possible score on the SAT's math section is 200. Even if you don't answer a single question correctly, you'll still score 200. A perfect score is 800, and the 50th percentile is between 500 and 510 on a score report, so you could consider a low score anything below 500.
Is square root an exact answer? ›Most square roots are irrational numbers. This means we can't give their exact value in fractions or decimals. Because of this, when we use calculators to find square roots we get only approximate values.
Is 2 √ 2 the same as √ 2? ›2xroot2 is the same thing as 2 root 2.
Why are square roots important? ›It has a major use in the formula for roots of a quadratic equation; quadratic fields and rings of quadratic integers, which are based on square roots, are important in algebra and have uses in geometry. Square roots frequently appear in mathematical formulas elsewhere, as well as in many physical laws.
Do I do square root first? ›
When performing a series of mathematical operations, begin inside the parentheses. Next, calculate any exponents or square roots. Then, multiplication and division. And finally, addition and subtraction.
Can a square root be negative? ›In general, when someone is asking for a square root, they are seeking the positive value. This is called the principal square root. However, square roots can also be negative. Thus, the number -6 can be a square root of the number 36, just not a principal square root.
Does square root of 9 have 2 answers? ›The square root of 9 is 3, because 3 multiplied by itself equals 9. Therefore, we can write the square root of 9 as √9 = 3. It is important to note that there are two possible solutions for the square root of any positive number, one positive and one negative.
Why root 4 is only 2? ›The roots of √4 can either be positive or it can be negative. Or in other words, we can state that every number has two roots: positive and negative. Therefore, the value of √4 can be either -2 or it can be + 2 or it can also be represented as ± 2.
What type of answers do square roots have? ›A square root asks you which number, when multiplied by itself, gives the result after the √ symbol. So √9 = 3 and √16 = 4. Every root technically has a positive and a negative answer, but in most cases the positive answer is the one you'll be interested in.
What is the square √ 64? ›The square root of 64 is 8, i.e. √64 = 8.
Is 1 √ 2 a thing? ›Therefore, 1√2 cannot be rational. Hence, it is irrational.
Is there a square root of zero? ›Zero has one square root which is 0.
Why is the square root of negative 1 i? ›An imaginary number is the value of the square root of a negative number. There is no place on the number line to represent them. The letter "i" is used to represent an imaginary number.
Is square root easy? ›How to Calculate the Square Root of a Number? It is very easy to find the square root of a number that is a perfect square. For example, 9 is a perfect square, 9 = 3 × 3. So, 3 is the square root of 9 and this can be expressed as √9 = 3.
How do you find ✓ 5? ›
Therefore, the value of root 5 is, √5 = 2.2360… You can find the value of the square root of all the non-perfect square number with the help of the long division method.
Is it possible to solve square roots without a calculator? ›To find a square root of a number without a calculator, see if you can get to that whole number by squaring smaller numbers, or multiplying a smaller number by itself. If the number is a perfect square, you will get a whole number as the square root.
Do you need to know geometry for SAT? ›The SAT expects you to know basic geometric concepts, like the properties of angles, shapes, and solids. But, you are given a few formulas to help you out with these problems: However, we recommend having these formulas memorized.
Do you have to complete the square? ›If you are trying to find the roots of a quadratic equation, then completing the square will 'always work', in the sense that it does not require the factors to be rational and in the sense that it will give you the complex roots if the quadratic's roots are not real.
What are the 5 steps to completing the square? ›- Step 1: Divide the equation by a. ...
- Step 2: Move the constant term to the right side of the equation. ...
- Step 3: Take half of the coefficient for x and square it. ...
- Step 4: Add the square to both sides of the equation. ...
- Step 5: Factor the perfect square trinomial. ...
- Step 6: Take the square root of both sides.
The SAT provides a reference sheet of math formulas in the SAT math section – but it's short. You'll use more formulas on test day than you see on the sheet. The formula list below boils down the formulas you will most likely use on the SAT.
What to do if you dont know how to answer the questions in the SAT math section? ›Never leave questions blank on the SAT, as there is no penalty for wrong answers. Even if you're not sure of the correct answer, eliminate as many answer choices as you can and then guess from among the remaining ones.
Does the SAT provide math formulas? ›Math Formulas Given on the SAT Test
Geometrical formulas and formulas pertaining to degrees are provided on the test itself, which means you won't have to memorize this information before taking the test.
Is the SAT Reading or Math section harder? It generally depends on a person and their subject skills, but most people find the SAT Math — No Calculator section more challenging.
When should you not complete the square? ›Completing the square won't work unless the lead coefficient is 1! Take ½ (divide by 2) the coefficient of x; then square the result. Add that number to both sides of the equation. Factoring the left side will result in two identical binomials which can be written as a perfect square.
Why is completing the square so hard? ›
Completing the square might be confusing for some people because it involves finding a number that is half the square root of another number (only in some equations).
What are the rules of square math? ›- All four interior angles are equal to 90°
- All four sides of the square are congruent or equal to each other.
- The opposite sides of the square are parallel to each other.
- The diagonals of the square bisect each other at 90°
- The two diagonals of the square are equal to each other.